South African Research units and funding scenarios

I have been holding back on this post for a while, because it touches on a very sensitive situation here in South Africa regarding the student protests about university fees (see #feesmustfall). In South Africa, many of our research and technology development units that are publicly funded are hosted by universities. These centres depend on students and particularly post graduate students to deliver services to industry. At the same time these centres depend on industry to commission research, prototypes and to also take up the graduates. With the massive shortage of funding in the education sector, many of these centres and their hosting universities are starved of funding.

In August, I was helping a leadership team think through their industry strategy. I realised that their strategy was dependent on two implicit assumptions. Firstly, that the student unrest about the fees would be contained and short lived, with government miraculously finding funding from somewhere to relieve the pressure in the system. Secondly, they assumed that the private sector would somehow remain keen to invest in R & D, problem solving and prototyping despite the political uncertainty and adverse business conditions that we have in South Africa at the moment.

I helped the team to develop a set of scenarios, and this is what this post is about. It was a spur of the moment idea at the end of a meeting.

A simple way to develop scenarios would be to take the two assumptions (we usually use uncertainties) and to construct a simple 2 x 2 matrix. I know a 2 x 2 matrix has many shortcomings, but this simple matrix was to allow a team to explore several topics they have been hesitant to consider collectively. This was about helping a group make sense so that they could develop some actions together. With the leadership team, we wrote an assumption about the stability at the university on the horizontal axis. On the left we have a stable political environment at the university, with some high uncertainty about how long the peace would last and how much public funding will be available. On the right hand side we wrote that the situation becomes both unstable and uncertain. This axis is all about the stability of the hosting university.

On the vertical axis we wrote at the top that business people remain optimistic and continues to draw on the facilities and the services of the research centres, while at the bottom we formulated the opposite.

This simple matrix gave us four quadrants which we numbered 1 to 4 clockwise.

Scenario_Matrix

The instruction to the team was to think of each of the quadrants in the extreme of the two assumptions of the quadrant if they both played out. I won’t repeat all that was said here, but will just briefly capture some ideas. In quadrant 1, the situation at the university was stable, while business people continued to draw on their resources. The group agreed that this was the preferred quadrant!

Then they consider quadrant two, where the university was in chaos, and industry had to find alternatives for their services, or they were stuck. Trust relations developed with industry over many years were harmed (again).

In the 3rd quadrant, industry is depressed or paralysed, while the university is unstable. Everybody loses. Good graduates can’t find work, good researchers and lecturers lose hope and possibly leave the system, while business slowly but surely falls behind because the instability is very local. Globally competitors are investing, expanding and growing because the world goes on.

In the 4th quadrant the industry is depressed, meaning that demand from industry is possibly suppressed. The stability at the university is uncertain, meaning little investment takes place. The university does not have the resources to build capability or offers that helps industry, while industry does not have the resources to expand their investment. The whole system just hangs there waiting for something to give.

Now I know that this little scenario exercise was done very fast (we spent an hour on this), and yes, I know it does not address the fundamental issues that the university and government (and politicians) have to sort out. But the leaders quickly realised that their whole strategy was based on a quadrant 1 scenario. In fact, the very academics that always complains about the short term focus of the private sector were now trapped in a short term survival mode themselves. No industry or society can increase its wealth, prospects or competitiveness by waiting, especially when global competitors are at the door, looking for opportunities! This quick exercise helped the team to realise they needed to expand their offerings to be ready for the very likely other quadrants. They also realised that they had to think of ways of adapting their strategy so that the small steps they could take with their existing resources would lay “platforms” or stepping stones for an as diverse as possible range of future alternatives. For instance, one of the technology centres decided to shift its focus from a product development to a process enhancement focus, because there was a strong interest from industry to find ways of improving operations, cutting costs and improving flexibility.

The scenario dialogue enabled several follow up meetings  where the team could draw in more people and together re-imagine their future alternatives. Everybody was relieved that they had some options, where before this meeting they felt trapped without many options.

What I tried to illustrate in this post is that a simple scenario exercise could be a great instrument to help a team realise that despite almost certain disruptions, they could still think in the short term and the longer term. They had some options, they could even create more. By anticipating the future they also felt more ready for the disruptions that we are all waiting for.

For me it was also important to see how this team realised that their clients (industry) also faced huge uncertainties, and that if the research centre could offer services that reduce risks and costs while at the same time creating alternatives for market and technological development. Somehow shifting the focus from their own survival (and fears) towards the needs of industry and graduates looking to complete their research helped them move forward. Thus I could help the team consider how they could ensure their clients continue to innovate, which in turn helped the leadership to better understand how they themselves then have to be innovative.

Innovation was instigated!

 

 

 

Republish: The ‘fourth industrial revolution’: potential and risks for Africa

The ‘fourth industrial revolution’: potential and risks for Africa

Image 20170328 3803 1jykm8e
Klaus Schwab, the World Economic Forum founder, holds his book about the Fourth Industrial Revolution.
Reuters/Denis Balibouse

Ross Harvey, South African Institute of International Affairs

Klaus Schwab, the founder of the World Economic Forum, argues that the single most important challenge facing humanity today is how to understand and shape the new technology revolution. What exactly is this revolution, and why does it matter, especially for Africa? The Conversation

The “fourth industrial revolution” captures the idea of the confluence of new technologies and their cumulative impact on our world.

Artificial intelligence can produce a medical diagnosis from an x-ray faster than a radiologist and with pinpoint accuracy. Robots can manufacture cars faster and with more precision than assembly line workers. They can potentially mine base metals like platinum and copper, crucial ingredients for renewable energy and carbon cleaning technologies.

3D printing will change manufacturing business models in almost inconceivable ways. Autonomous vehicles will change traffic flows by avoiding bottlenecks. Remote sensing and satellite imagery may help to locate a blocked storm water drain within minutes and avoid city flooding. Vertical farms could solve food security challenges.

The machines are still learning. But with human help they will soon be smarter than us.

The first industrial revolution spanned 1760 to 1840, epitomised by the steam engine. The second started in the late 19th century and made mass production possible. The third began in the 1960s with mainframe computing and semi-conductors.

The argument for a new category – a fourth industrial revolution – is compelling. New technologies are developing with exponential velocity, breadth and depth. Their systemic impact is likely to be profound. Policymakers, academics and companies must understand why all these advances matter and what to do about them.

So why does the fourth industrial revolution matter so much – specifically for Africa? And how should the continent approach the risks and opportunities?

Exciting opportunities

The revolution’s most exciting dimension is its ability to address negative externalities – hidden environmental and social costs. As Schwab has written:

Rapid technological advances in renewable energy, fuel efficiency and energy storage not only make investments in these fields increasingly profitable, boosting GDP growth, but they also contribute to mitigating climate change, one of the major global challenges of our time.

Some countries’ growth trajectories may follow the hypothesised Environmental Kuznets Curve, where income growth generates environmental degradation. This is partly because natural capital is treated as free, and carbon emission as costless, in our global national accounting systems.

The hypothesised Environmental Kuznets Curve.

New technologies make it possible to truncate this curve. It becomes possible to transition to a “circular economy”, which decouples production from natural resource constraints. Nothing that is made in a circular economy becomes waste. The “Internet of Things” allows us to track material and energy flows to achieve new efficiencies along product value chains. Even the way energy itself is generated and distributed will change radically, relying less and less on fossil fuels.

Perhaps most importantly for African countries, then, renewable energy offers the possibility of devolved, deep and broad access to electricity. Many have still not enjoyed the benefits of the second industrial revolution. The fourth may finally deliver electricity because it no longer relies on centralised grid infrastructure. A smart grid can distribute power efficiently across a number of homes in very remote locations. Children will be able to study at night. Meals can be cooked on safe stoves. Indoor air pollution can basically be eradicated.

Beyond renewable energy, the Internet of Things and blockchain technology cast a vision for financial inclusion that has long been elusive or subject to exploitative practices.

Risks

No revolution comes without risks. One in this case is rising joblessness.

Developing countries have moved away from manufacturing into services long before their more developed counterparts did, and at fractions of the income per capita. Dani Rodrik calls this process “premature deindustrialisation”.

The employment shares of manufacturing, along with its value addition to the economy, has long been declining in industrialised nations. But it’s also been declining in developing countries. This is unexpected, because manufacturing is still the primary channel through which to modernise, create employment (especially by absorbing unskilled labour) and alleviate poverty. Manufacturing industries that were built up under a wall of post-independence protectionism are starting to decompose.

Rodrik D, ‘Premature deindustrialisation’, Journal of Economic Growth, 21, 2016, p. 19.

The social effects of joblessness are devastating. Demographic modelling indicates that Africa’s population is growing rapidly. For optimists this means a “dividend” of young producers and consumers. For pessimists, it means a growing problem of youth unemployment colliding with poor governance and weak institutions.

New technologies threaten to amplify current inequalities, both within and between countries. Mining – typically a large employer – may become more characterised by keyhole than open heart surgery, to borrow a medical metaphor. That means driverless trucks and robots, all fully digitised, conducting non-invasive mining. A large proportion of the nearly 500 000 people employed in South African mining alone may stand to lose their jobs.

Rising inequality and income stagnation are also socially problematic. Unequal societies tend to be more violent, have higher incarceration rates, and have lower levels of life expectancy than their more equal counterparts.

New technologies may further concentrate benefits and value in the hands of the already wealthy. Those who didn’t benefit from earlier industrialisation risk being left even further behind.

So how can African countries ensure that they harness this revolution while mitigating its risks?

Looking ahead

African countries should avoid a proclivity back towards the import substitution industrialisation programmes of early independence. The answer to premature deindustrialisation is not to protect infant industries and manufacture expensively at home. Industrialisation in the 21st century has a totally different ambience. In policy terms, governments need to employ systems thinking, operating in concert rather than in silos.

Rapidly improving access to electricity should be a key policy priority. Governments should view energy security as a function of investment in renewables and the foundation for future growth.

More generically, African governments should be proactive in adopting new technologies. To do so they must stand firm against potential political losers who form barriers to economic development. It pays – in the long-run – to craft inclusive institutions that promote widespread innovation.

There are serious advantages to being a first mover in technology. Governments should be building clear strategies that entail all the benefits of a fourth industrial revolution. If not, they risk being left behind.

Ross Harvey, Senior Researcher in Natural Resource Governance (Africa), South African Institute of International Affairs

This article was originally published on The Conversation. Read the original article.

Radio interview on technology

Following the interview on Cliffcentral.com two weeks ago on innovation during The Leadership Platform show, I was asked to return. This time the conversation was about technology. You can download the podcast here.

20161031business3

Richard, Shawn and Daniel (left to right)

 

After 30 minutes, the attention switched to a small and medium enterprise. I had invited Daniel Paulus, one of my clients, to the show to be interviewed. Daniel is one of the founders of the Louie Daniel jewellery company, a speciality retailer of custom made jewellery and diamonds. They are one of the leadership teams that I have been coaching on technology, innovation, strategy and culture.

I promise to reveal more about my formal coaching programme shortly.

 

Instigating Innovation: Tech push fallacy is still alive

Let me continue with the Instigating Innovation series. I will slowly shift my attention to the technology intermediaries, research centres and technology transfer organisations that exist in many countries to overcome persistent market failures in the private sector. Yes, I know it is a shock for some, but these centres do not really exist to promote the technical careers or the of these people in these centres, nor to promote a specific technology in itself. From a systemic perspective, these kinds of technological institutions exist because they are supposed to overcome pervasive causes of under investment in technology (and skills development) and patterns of poor performance of enterprises. Economists describe the last two phenomena as the result of market failures, mainly caused by information asymmetries, a lack of public goods, high coordination costs, economies of scale and a myriad of other challenges faced by enterprises (hierarchies), markets and networks.

The challenge is that very often the technology these intermediaries promote become an objective in itself. The technology, embodied in equipment, processes and codified knowledge, becomes the main focus. So now we see technology centres being created to promote Industry 4.0, or 3D printing, or environmentally friendly technology. While I am the first to admit that I am helping many of my clients come to grips with industry 4.0, additive manufacturing or environmentally friendly technology, we must not confuse means with ends.

About 20 years ago, my late business partner Jorg Meyer-Stamer and his colleagues at the German Development Institute developed the Systemic Competitiveness framework. Many of my posts on technological capability and innovation systems are based on this Systemic Competitiveness, but I wont go into this right now (perhaps I can do that in a later post), but will only state this this model has greatly influenced my thinking of how technological capability can be developed in order to upgrade, improve or stimulate the competitiveness and innovative behavior of enterprises and state institutions. In one of my current research contracts I had to retrace the evolutionary economics origins of this framework and I found the following paragraph in one of the early publications:

“A further fallacy also played a role in the past: the establishment of technology institutions was based on the technology-push model, according to which breakthroughs in basic research provide impulses to
applied research, which these in turn pass on to product development. In fact, however, research and development is for the most part an interactive process; and it is frequently not scientific breakthroughs
that impel technological progress, but, on the contrary, technological breakthroughs that induce scientific research, which then seeks to interpret the essence and foundations of a technology already in use.”

What struck me was the past tense in the first sentence. So many of the technology institutions I am working with are still established on these same grounds. A technology push model. Actually, much of economic development has the same mindset, a solution-push model. It implies that clever solutions are developed in a clinical and carefully managed environment, and then is made relevant to business people (as Jorg often said “stupid business people”) through iterations of “simplification” and “adaptation”. Don’t get me wrong. I am the first to promote scientific discovery. But this has its place. Modernisation of industry must start from the demand side:

  • where is the system now?
  • What is preventing companies from competing regionally and internationally?
  • What kind of failures, both in business models but also in markets are repeating over and over again?
  • What kind of positive externality can we create?
  • How can we reduce the costs for many enterprises to innovate and become more competitive?

Only then do you start asking what kind of technological solutions, combinations, coordination effort or demonstration is needed. Perhaps no new equipment or applied research is needed, maybe something else must first happen. Some non technical things that I have seen work are:

  • mobilising a group of enterprises into a discovery process of common constraints and issues
  • arranging exchange between researchers, academics and business people at management and operational levels
  • hosting interesting events that provides technical or strategic inspiration to the private sector
  • helping companies overcome coordination costs
  • making existing technology that is not widely used available to industry so that they can try it
  • placing interns at enterprises that have different skills than the enterprise use at the moment
  • arranging visits to successful enterprises; and many more.

The truth of the matter is that the innovative culture of the technology institution, and its openness to learn from the industries it is working with are much better predictors of whether the industries around them will be innovative. If the technology institutions are bureaucratic, stale or rigid, nobody in industry will be inspired by them to try new ideas, new technologies, explore applying technology into new markets, etc. Just like we can sense when we arrive (or contact) a succesful enterprise, so we can all sense when we have arrived at an innovative technology institution. It looks different, there is a vibe. It is information rich, everywhere you look you can see ideas being played with, things being tried, carcasses of past experiments can be seen in the corner.

I can already hear some of my customers leading technology centres reminding me that I must consider their “funding mandate from government” and their “institutional context in universities” as creating limitations in how creative they can be, and just how much demand orientation they can risk taking. Yes. I know this. In the end, leaders must also create some space between the expectations of their funders (masters?), their teams and their target industries. In fact, how leaders balance these demands and what is needed by their clients, students and staff can probably be described as business model innovation. If you cannot get funding from government for what you believe is required, just how creative are you to raise this funding through other (legal) means?

We have seen over and over again that it is not the shiny new piece of equipment in the technology centre that inspires industry; but the culture of the technology centre, the vibe, the willingness to try crazy ideas to make even old stuff work better or combining old and new. Ok, I agree, the shiny equipment excites geeks like me, but this is not all that matters.

My main point is this. Technology Institutions should focus on understanding the patterns of performance or under-performance in the industries and technology domains they are working in, and should then devise innovative products, services and business models to respond to these. This means working back from the constraint to what is possible, often through technology. To be effective in helping entrepreneurs overcome the issues they are facing would require that these technology institutions are innovative to the core. Not just using innovative technology, or offering some innovative services, but also in how these institutions are managed, how they discover what is needed and in how the collaborate with other institutions and the private sector.

To instigate innovation in the private sector, publicly funded technology institutions need to be innovative themselves.

 

Source:

ESSER, K., HILLEBRAND, W., MESSNER, D. & MEYER-STAMER, J. 1995.  Systemic competitiveness. New patterns for industrial development. London: Frank Cas. Page 69

 

 

Instigating Innovation: Accelerating Experimentation in industry

When innovation centers, technology transfer centers, applied research platforms and other similar organisations want to help industry with innovation, one way could be to assist companies to experiment with new ideas. I will simply refer to these centers from here onward as innovation and technology support centers. In most of the places where I work these centers are often hosted by or associated with universities, applied research organisations or with technology transfer organisations.

One way to support industry to experiment is through various technology demonstration-like activities, allowing enterprises access to scarce and sophisticated equipment where they can try new ideas. In its simplest form, facilities allow companies to order samples to a certain specification, allowing a company to see whether a particular process can meet a specification or performance criteria. A slightly more intensive form of tech demonstration allows in visitors and a technology and its application is demonstrated (eyes only, no touching!). Very often equipment suppliers play this role, but in many developing countries equipment suppliers behave more like agents and can not really demonstrate equipment.

In Germany I saw demonstration facilities where the pro’s showed the enterprises how things works, and then they stood back allowing teams from a company to try things themselves.

A critical role of innovation support centers is to provide industry with comparative studies of different process equipment. For instance, in an innovation center supporting metal based manufacturers, providing industry with a comparison of the costs and uses of different kinds of CAD systems could be extremely valuable to industry.

Maker labs, Fablabs and similar centers all make it easier for teams that want to create or tinker with an idea to gain access to diverse technologies, reducing the costs of experimenting. However, the range of equipment in these labs are often not so advanced, but it can often be very diversified. In my experience these centers are very helpful to refine early idea formation and prototyping. However, to help manufacturers experiment with different process technologies, different kinds of materials, substitute technologies, etc. is the a binding constraint in many developing countries. The costs of gaining new knowledge is high, and due to high costs of failure, companies do not experiment.

Innovation support centers must be very intentional about reducing the costs of various kinds of experiments if they want manufacturers, emergent enterprises and inventors to try new ideas. These innovation centers can play a role by:

a) assisting companies to internally organize themselves better for experimentation internally

b) assisting many companies to organize themselves better for experimentation collaboratively

c) conducting transparent experiments on behalf of industry collectives

In my experience, graduates from science disciplines often understand how to conduct experiments because their coursework often involve time in a lab. They know basics like isolating variables, managing samples, measuring results, etc. However, engineering graduates often do not have this experience (at least in the countries where I am working most). For many engineering graduates, the closest they will ever get to an experiment is a CAD design, or perhaps a 3D printed prototype.

Therefore, it is necessary for a range of these innovation and technology support centres to assist companies at various hierarchical levels to experiment.

At the functional or operational level, organising for experimentation involves:

  • creating teams from different operational backgrounds,
  • creating multiple teams working on the same problem,
  • getting different teams to pursue different approaches
  • failing in parallel and then comparing results regularly
  • failing faster by using iterations, physical prototypes and mock ups
  • According to Thomke, results should be anticipated and exploited – even before the results are confirmed

At a higher management level, organising for experimentation involves:

  • Changing measurement systems to not only reward success, but to encourage trying new things (thus encouraging learning and not discouraging failure).
  • moving from expert opinion to allow naivety and creativity
  • Preparing for ideas and results that may point to management failures or inefficiencies elsewhere in the firm (e.g. improving a process may be hampered by a company policy from the finance department)

Getting multiple companies and supporting organisations to experiment together is of course a little bit harder. Management of different organisations have many reasons to hide failures, thus undermining collective learning. One way around this could be to use a panel or collective of companies to identify a range of experiments, and then these experiments are conducted at the supporting institution in a transparent way. All the results (success, failures and variable results) are carefully documented and shared with the companies. However, to get the manufacturers to use these new ideas may require some incentives. In my experience, this works much better in a competitive environment, where companies are under pressure to use new ideas to gain an advantage. In industries with poor dynamism and low competition, new ideas are often not leveraged because it simply takes too much effort to be different.

Promising ideas from experiments can be combined and integrated after several iterations to create working prototypes. Here the challenge is to help industries to think small. First get the prototype process to work at a small scale and at lower cost before going to large scale of testing several variables simultanously. An important heuristic is to prototype at as small as possible scale while keeping the key mechanical or scientific properties consistent. More about this in a later post. (Or perhaps some of the people I have helped recently would not mind sharing their experience in the comments?)

I know this is already a long post, but I will add that Dave Snowden promotes Safe2fail probes, where teams are forced to design a range of experiments going in a range of directions even if failure is certain in some instances. In my experience this really works well. It breaks the linear thinking that often dominates the technical and manufacturing industries by acknowledging that while there may be preferred solutions, alternatives and especially naive experiments should be included in the overall portfolio. To make this work it is really important that the teams report back regularly on their learning and results, and that all the teams together decide which solutions worked best within the context.

THOMKE, S.H. 2003.  Experimentation Matters: Unlocking the Potential of New Technologies for Innovation. Harvard Business Press.

 

Instigating innovation in traditional industries

The average manufacturer in a developing country grapples with the notion of innovation. That is why they are often called “traditional”, although almost each industry would have one or two outliers. While governments, like South Africa, offers incentives to stimulate innovation, most manufacturers do not identify with the term the way the governments use it. For instance, when governments use the word “innovation” they often mean “invention“, in other words something that can be protected, copyrighted and owned (more about the differences between innovation and invention here). While I understand the argument for patenting and protection I think this narrow definition of innovation is inhibiting many industries from increasing their productivity and competitiveness by copying what works from elsewhere (catching up). It also fails to recognize that in many value chains the manufacturers themselves make components or sub-systems that goes into overarching architectures (defined by standards, compliance, specifications), so their design authority is limited in scope.

Innovation_invention

Herewith a list of synonyms from thesaurus.com for innovation that I have assessed to see how enterprises might understand or respond to these words:

  • Modernization – lots of enterprises dream about this but often do not have the many nor the organizational capability to pull it off (one day, next time)
  • contraption – many innovations and most inventions result in one of these. You can see them standing in the corners in most factories
  • Mutation, addition, alteration, modification – this is what most innovations in traditional industry would look like. They are doing this all the time as their machines gets older, but this behavior is mostly not recognized nor accelerated
  • newness, departure, deviation – the bolder enterprises with more financial and organizational capability might try these, but it takes capital to maintain.

Most people understand innovation as an outcome, but the word itself is a noun that implies change and novelty. It is about a shift, even if it is often incremental. The reason why so many of our enterprises here in South Africa are not deemed to be innovative is because they struggle (or perhaps do not have the organizational capability) to manage several simultaneous change processes. As Tim Kastelle posted some years ago, change is simple but not easy. Although this is often described as a technology problem it is really a management problem (see some older posts here). I would go even further and state that in many industries the margins are so thin that even those enterprises that have a reasonable management structure would struggle to finance many innovations at the same time.

However, in my experience of visiting more than 50 manufacturers every year I am always stunned and awed by how ingenious these companies are. They keep old machines running, often modifying them on the fly. They operate with fluctuating and unreliable electricity, inconsistent water pressure and often hardly any specialist support. What policy makers often do not recognize is that in developing countries it takes a lot of management time and capacity just to keep the throughput going. The time and effort to go explore “change” beyond what is necessary in the short to medium term is very expensive. The costs of evaluation new ideas, new technologies, new markets and better suppliers are all far more expensive in developing countries than elsewhere. Yet, at the heart of innovation is the ability to combine different inputs, different knowledge pools, different supporting capabilities with different market possibilities.

There are two implications for innovation promotion practitioners.

  1. The process of instigating innovation must start with recognizing how companies are innovating NOW. How are they modifying their processes (and products), and how much does it cost? What are the risks that are keeping them from introducing more novelty? Perhaps use the Horizons of Innovation (my next post) to create a portfolio of innovation (change) activities that can be identified at the enterprise or industry levels.
  2. It is hard if not impossible for different manufacturers in most countries to figure out what others are struggling to change at a technological level. Use your ability to move between enterprises to identify opportunities to turn individual company costs into public costs (this is often cheaper). Do not take the innovation away from enterprises, but use your meso level technology institutions to try and accelerate the learning or to reduce the costs of trying various alternatives. Be very open with the results to enable learning and dissemination of ideas.

The process of instigating innovation must start with recognizing where manufacturers are naturally trying to change, just like a change process in an organization must start with understanding current behaviour, culture and context. Somehow innovation have become so associated with a contraptions and narrow views on technology that the organizational development body of knowledge and management of change have been left behind.

If the culture cannot change then the business cannot change

I received many comments and tweets about the previous post. Thank you for ideas and comments

Some agreed that innovation is the result of culture. Some said that culture is not only created by management, but also by staff. For instance, the admin pool in a traditional engineering company can be very innovative (and creative) even if the rest of the business is stuck in the 1980s.

Somebody told me that creating an innovative culture is in itself a chicken-egg (low equilibrium) situation, because for a leader to create (or enable) an innovative culture takes innovation in itself. You can see where this is going.

Then I discovered a recent cartoon in my inbox by Hugh Macleod of Gapingvoid fame. This cartoon says it all.

An organization that cannot change its culture (due to too rigid systems, due to lack of management capability, due to its people) has become trapped in time. While some organizations may exist like this due to sheer momentum, due to protection (by law), by continuous funding, or for whatever reason, will struggle to adapt to external change. These organizations are not resilient and they are at the mercy of external supporters (a.k.a clients, benefactors, funders or shareholders).

I was also asked how some organizations can still innovative despite a poor innovation culture. Again, it is of course possible to replace a machine, or for a few people in an organization to design something brilliant, or for a new process to emerge. Of course it is possible. But it takes much more energy, determination of a few, and some really tenacity to be innovative in an un-innovative (what is the right word here?) culture.

I am sure more comments will come.

Cheers, Shawn

I appreciated the comments received by e-mail, but wonder why people are not posting comments to this article? Is the WordPress registration process to difficult? Please let me know. And keep those comments coming!

Innovation as cultural as opposed to innovation as a technique or function

Reflecting on the correspondence I have received after my previous post and recent training sessions with manufacturers, I realize that people are looking for tools and tricks to “fix” innovation. Sometimes it is actually not even about innovation, but about making up for past decisions like not investing in technology or market development when they should have. Others think of innovation as a function, or as a management tool that can be standardized into a job description or an area of responsibility. While this is possible in some contexts, I don’t find this approach to innovation so useful in the smaller and medium sized manufacturing firms and the research/technology institution space where I am working in.

For me, innovation is firstly a value, perspective on how organizations should be. When management says “we are an innovative organization” or “we want an innovative culture” or “our reputation is that we are innovative” then we can move to tools, portfolios, tricks, and tweaks (those things that people in innovation functions must attend to). Many textbooks, articles and blog sites on innovation and technology management are then useful. Actually the challenge is to decide which of the bucketloads of advice to use, and consultants like me typically help organizations to choose a few tools and to then use them consistently and fully. I would dare to say that it is relatively easy to help companies that are already innovative to become more innovative.

The area that I am really intrigued by, are those organizations that are not innovative, or that would not describe themselves as having an innovative culture. Maybe they used to be innovative. Maybe they are innovative in some areas, but not in others. Maybe they had one or two tricks in the past that have now become old. These could be extremely competent organizations, like a research programme, a manufacturer of highly specialized industrial equipment, or an organization that simply design and manufacturers what their customers expressively tell them to make. Even if the outputs of these organizations can be described as “innovative”, these organizations themselves do not necessarily have innovative cultures that constantly are creating novel ideas, processes and markets. In my experience these organizations have technically brilliant people, but management is often not able to harness the genius, experience or creativity of their people. The main reason for this is not a lack of technique, tools or tricks. It is because of a lack of an innovative culture, leading to a lack of innovative purpose. These organizations are trapped. They are equipped for the past, but they are paralyzed by all the choices they have to make about the future. For management, it feels like everything that they have in place are inadequate and need equal attention, ranging from attracting staff with better (or different) qualifications to finding new markets, developing new technological capability, sorting out cash flow and capital expenditure, addressing succession planning, etc.

Improving the innovation culture of an organization is a complex issue. It is not about tasks, functions or tools, but about changing relations between people, within and beyond the boundaries of the organization.

When working with organizations that must improve their innovative culture, motivational speeches, optimistic visions of the future, etc, are not useful and could in fact deepen the crises facing management. Instruments such as scenario planning, roadmaps, foresight techniques, or interventions like starting a R&D unit, a lean exercise to reduce waste, are all addressing the wrong issues and distract management from confronting the real issue that are stifling the organization. It narrows the ability of management and specialists to scan within and beyond the organisation for opportunities that could be used to change the way people work together, think together, solve problems together. The typical employee in a manufacturing or technical environment loves solving problems, love tinkering with novelty. But often management becomes so performance or target obsessed (lean?) that they don’t tap into the latent potential of their people.

Improving the innovation culture process starts with connecting management back with their people. It starts in the present, the now, not the future scenarios, not with using innovation techniques, better analytical tools, and in most cases not with some or other management fad. It goes beyond trying to improve products, processes or business areas, beyond gaps in the management capability. It must look at the relations between people, between what people know and can do now (or in the recent past), and the potential the people see to make small improvements.

When management has the courage to decide to improve their innovative culture it starts a process that cannot be described as incremental improvement, as that sounds too directed. It is rather like a deepening, or an awakening where employees are inspired to contribute, and management is more aware what they can do to enable their employees to become more innovative on all fronts. Of course, management also face the risk that outdated management approaches that does not seek to empower employees to be creative will be exposed, and some tough decisions will have to be made.

For me the most promising approach to improving innovation in an organization is a organization development approach (not limited to design, not based on technical innovation instruments) based on complexity thinking, like our Systemic Insight approach. We are using instruments such as Sensemaker developed by Cognitive Edge to find areas for improvement, areas where relations between knowledge objects (knowledge, artificats, heuristics, etc) and people can be improved, starting from where the system is and then probing to understand what the immediate potential is for improvement. It allows people to take many small steps in parallel to improve the system and to push back the boundaries that have constrained the creativity in the organization.

In my view, building an innovation culture goes far beyond establishing or refining innovation management functions. It is a strategic issue that is initiated by top management, but that will soon spill over into every area of the organization, hence it cannot be driven from a management function like “innovation”.

Instigating innovation: Where to start

I am currently focused on strengthening the manufacturing sector. Increasingly I am speaking at meetings, events, in boardrooms and in front of post graduate students about innovation. In this more engineering-minded world people are asking me the whole time for a few tips to get innovation going.

  • “How about an idea box?”
  • “How about canvassing ideas for a new product design from our customers?”
  • “How about rewarding our engineers with a profit share if they design a new product?”

The truth is, many manufacturing enterprises, especially the smaller ones, are too sliced into specific functions. Design designs, manufacturing manufacturers, salesmen become creative about delivery dates, and accounts, well, they count costs. This hierarchy makes information flows about potential improvements, new market opportunities and some old tricks that could become useful again very difficult. The cost of coordination in these enterprises are very high. In these silo-based organizations the costs of finding information, new signals and new ideas from outside the organizations is extremely high, and in general, these organizations struggle to learn.

A second problem is that most smaller manufacturers are mainly focused on product innovation. Which does not mean being focused on knocking the socks of their customers with frequent improvements or brilliant designs. Unfortunately many of the more traditional manufacturers are focused on how to get the price down or how to sort our quality issues. Which is actually a kind of process improvement, except that it is a very narrow kind of process improvement. The challenge with this incremental approach is that you can at most only grow and develop as fast as your customers can articulate what they want. Competitors or substitutes can also upset market relations by coming up with novel solutions that an incremental approach struggles to generate.

A third problem is that innovation is only done when customers demand it. It is passive. It lives in bursts to get things right, and then it settles into a problem solving mode until a next customer makes some unreasonable demands.

What many manufacturers lack, especially those in the more traditional sectors like metals and engineering, is a focused effort by top management to build an innovative culture that is actively trying to find product, process and business model improvements. It must be focused internally, in order to constantly rethink the business and its core processes, and it must be focused externally, to what customers and competitors are doing. The really good companies are also looking beyond current markets and competitors to new technologies and how they might shape the future.

This far I have addressed a business perspective. But research organizations, technology transfer centres and industry support centres can also get trapped in a low innovation culture.

I am now working with a few industry groups and research and technology centres to find out how these organizations can move beyond “catching up” and responding to change towards anticipating what is next. It sounds really simple, but by simply mobilizing more and more people in the organization to start searching for what’s next has already yielded amazing results in a short time. Maybe I am over optimistic, but already I can sense the innovation cultures change in these organizations as more and more people become involved in searching for possibility.

A quote that is attributed to William Gibson goes “The future is already here – it’s just not evenly distributed”. Step one is get more people involved in searching for what is already here, it is just not recognized inside the firm or industry.

New series: Instigating Innovation

I have been developing a new capacity building method and training approach that brings together my work in innovation systems promotion  and my work on improving technology and innovation management. I call it “Instigating Innovation”.

I chose “instigating” because it has a more positive ring to it than provocation or incitement. While it is a noun with mainly a positive tone, it is a bit more aggressive than support, enable or encourage or even stimulating. I have been referred to in my past as an instigator of change so I thought this was a good idea.

Why was this effort firstly necessary and secondary so rewarding?

My work on innovation systems is mainly aimed at assisting meso-organizations such as technology transfer centres, research centres and universities to be more responsive to the needs of the private sector. While it only takes a few interviews by a senior decision maker from one of these institutions to a few leading enterprises to get the organization to improve its offering to the private sector, it does not solve the problem that these institutions often needs a continuous process of innovation itself. So while they can respond to the needs of the enterprises (for instance by launching a new service, or making a key technology available, etc), they often are not able to innovate constantly in order to anticipate what they private sector might need in the future.

With my other hat on, working in the private sector to improve the management of technology and innovation is focused on helping individual and on rare occasions, groups or networks of enterprises to formalize or improve their management of innovation. Here my challenge is that most enterprises innovate by accident, or have elements of an innovation management approach in place without knowing it. But it is not systematic nor is it consistent.

So both supporting institutions and enterprises lack some very basic frameworks to focus their existing development and learning processes to ensure not only short term results (new products & services, process improvements, cost reduction, etc) but to also ensure longer term success (playing in the right markets, selecting the right technologies, investing in the right kind of knowledge, partnering with the right people, etc). Furthermore, most enterprises and supporting institutions have something else in common: they often face resource constraints with the most versatile of their staff being involved in problem solving and not thinking about the future and what may be possible sometime down the line.

I set aside most of March and had great fun reading through my collection of articles, books, reports of past missions, and speaking to entrepreneurs and development practitioners I trust. Based on this investigation I decided on the following criteria for instruments to include in the Instigating Innovation module:

  1. Each instrument or concept must be relevant to both enterprises and meso-level organizations05 building innovative capacity small
  2. Each instrument must provide a very simple framework that can be illustrated on a flipchart
  3. The simple framework must be usable as a workshop format that allows people to reorganize or explore their current and future practices
  4. The frameworks must be scalable, both in depth (allowing pointers for a deep dive into an issue) and in width (useable for a product, issue, portfolio or the strategy of the organization as a whole).
  5. Lastly, I did not want to be the consultant with a project, I want to be the facilitator that enables change and that builds long term sustainability into the organizations that I work with.

This was a very rewarding exercise. Not only do I love reading about innovation, change and technology, I love finding better ways to explain these concepts. It was also great to find a way to connect my work on innovation systems, which often seems abstract, with the tough decisions that the enterprises that I work with must confront and address. I tend to work in the more technical domains dominated by academics, engineers, scientists and manufacturers, so finding a simple yet convincing way to add value to what these clever people do was important.

I will in the next few posts reveal a little bit more of the tools I selected and how it can be used.

Thank you for the EDA team in Bosnia and Herzegovina who motivated me to turn this idea into a capacity building format and who agreed that I try “Instigating Innovation” on their team during my visit to Banja Luka in May 2015!

Instigating Innovation in Banja Luka with the team from EDA
Instigating Innovation in Banja Luka with the team from EDA