Some of the challenge prospective clients that reach out to me are grappling with

Due to my research, public speaking and writing my favourite topics I regularly receive requests to help somebody that is grappling with an issue either around meso-organisational change or about technological capability, innovation or disruption.

Usually after a few emails we schedule a phone call to discuss their context, their intent and my service offering. Thanks to my journal and reflection processes I can track the original requests and the ensuing correspondence or projects. Over the last six months, I have noticed some patterns that are now repeating. Here are some of the most frequently discussed points. While I can help with some of these, with some I cannot help for various reasons.

Because I have always focused on training other consultants and my own clients, I thought it would be a good idea to share these early observations with you.  (Larry, Goran, Bojan, Nik, Albina, Garth, these are for you). To save you all from many emails, I have written 8 blog posts in one!

So here are the emerging patterns of 2019:

  1. I am frequently contacted by organisations or projects that believe that technological change, or preparing for the 4th industrial revolution (4IR) is a project. That there is something that we can do quickly (one of the most popular search terms on this blogsite is “formula for 4IR” and “4IR method”. Preparing for technological change, responding to disruptions, or even preparing to disrupt others is a capability that is distributed over companies, public and civil organisations, regions and individuals and over time. It is not a project that ends, it is a capability that must be continuously nurtured. After addressing one threat or challenge and the next two will be on the horizon. While I love training, what these organisations really need are new technology, innovation, change and knowledge management capabilities.
  2. I am asked by development organisations to prepare their target groups or beneficiaries for the 4th industrial revolution by focusing on one threat. For instance by mastering computer-aided design, design thinking, or helping entrepreneur to cope with advances in digitalisation, 3D printing, or master some automation or sensor technologies. However, the reason why so many people lump so many technological advances together under the banner of the 4th industrial revolution is that these technologies are converging, and if they are not yet converging, they are rapidly learning from each other. That means the capabilities are converging or starting to follow similar evolutionary patterns.  That also means that very few economic activities are left untouched by changes in other sectors, technologies and markets. Again, this is not about training. It is about competence, leadership, sense-making and innovation. Perhaps it is mostly about learning, relearning and knowing what you have to master next. People also commonly confuse “digitalisation” with writing software, whilst telecommunication costs, insufficient regulatory frameworks for e-commerce, closed government (as opposed to open government) or very fast connectivity and data security are ignored.
    People that can quickly master a new domain, like machine learning, big data or concurrent design, will have a distinct advantage in the future. People that are specialised in one skill, especially a vocational skill, may be more vulnerable. But my main point here is that splitting up the technologies is not helpful. Again, the broad technical capability must be fostered. However, in addition to point 1, I want to add that the ability to track, master, integrate and leverage multiple specialised domains continuously over time is very important, even if they do not yet appear to have a relation to your industry, business or organisation.
  3. I am asked to help only the private sector in a country, region or sector. Many organisations believe that the private sector is most vulnerable to disruptions. I believe that many competent firms would be OK, but not all. Uncompetitive companies, un-innovative companies and undermanaged companies are going to be more vulnerable unless the state can afford to protect them and in so doing possibly raising the costs to the society. But what we must not lose focus of is that when one public sector organisation, programme or function fails, the effects could be far-reaching. Take for instance what happens when a local municipality in a developing country is undermanaged. It will affect the whole community. The challenge is that in developing countries the “revolution” or the “disruption” will be about social institutions (local government, universities, technical vocation colleges, schools, or whole governments etc.) that will be caught in a weak position – and unable to catch up or get ahead. So supporting the private sector in a place where many public institutions are failing is just naive. You do not address a market failure by focusing mainly on the private sector, just as you do not address government failure by only working with the government. 
  4. This point is an extension of the previous point. Many organisations that approach me want me to help them get the private sector more innovative. But here is the problem. It is not possible to develop a prosperous and successful private sector without the same happening in the public sector and in civil society. Actually, any form of innovation starts with a good basic and often some good higher qualifications. The changes that people can work together in a sophisticated way, without these arrangements being replicated in other sectors are naive. Complex forms of cooperation within an organisation, company, NGO, school or church depends on the ability to work together to solve problems that span over the ability of individuals. This needs trust, and it comes from the broader society and its formal and informal institutions. You cannot develop the private sector in a vacuum. Management teams of companies are not suddenly going to behave in novel arrangements that don’t exist in schools, sports teams, civil organisations, universities or political parties. Maybe it is possible to develop only the private sector in the short term, but for long term economic development, healthy public sector organisations are a pre-condition. The social technologies that enable the private sector to innovate, to combine old and new ideas, to figure out new ways of arranging teams around objectives, problems and opportunities are in most countries developed with the direct or indirect help of the public sector. Often these ideas are first developed around social, political or local problems. The quickest way to instigate innovation is to focus on creativity, better decision-making and increased performance in publicly funded programmes and civil organisations. Do you want to quickly get new forms of dialogue or new technology to spread in a location? Start with the schools, the local theatre, church or community organisation – and watch how fast the private (and hopefully public) sectors will catch on. Often the most adaptive private sector leaders are serving on the boards of the schools, local NGOs, and they take up new ideas very quickly.
  5. I am often asked to assist struggling industries in developing countries to become innovative, competitive or successful. Maybe the companies were successful once, hopefully not too long ago. The challenge with sectoral upgrading is that the prominent companies must either be very competent in market development, or they must have mastery in a technological domain that has a long cycle time still ahead. With one of these two domains mastered product and process innovation is possible, but perhaps not easy. The real challenge is often that in developing countries the business model innovations are the hardest and the cost of failure are also very high. Thus the incentives to try new business arrangements are low. If the companies are not able or willing to rethink or change their business models, then there is very little one can do. The entrepreneurs that will be successful in five years from now have already made decisions to master emerging markets and technologies today, and they have found a way to foster their competence in these domains within their current companies. They have innovated in the business arrangements, enabling them to innovate in products and processes. If there are no companies that are able to do this it is most likely the best idea to rather invest public funds into investment promotion, education, tech transfer and incubation to try and offset the job-losses when the current companies fail.
  6. I am often approached by internationally funded development projects to do something to create employment in a sector or a region in a developing country. The challenge is the sectors, supporting institutions and even the approach (the ideology) is already decided and cannot be changed. Often even a quick analysis and a few phone calls reveal that the development project has read the situation wrong, or they ignored strong messages of resistance because they believe in their ideology. Yet they persist, and now they are not getting the response from the stakeholders. I notice many of TVET and green economy projects that fall in this category. Even if there is great value in what these organisations have to offer, if they are not responding the binding constraints or challenges (the decision points) faced by the entrepreneurs and government officials, their offer will not be taken up. Or it may be taken up but it won’t stick. My approach for the last few years has been to wait for the projects to realise that they will never reach their targets and then to propose that we try some alternatives to see if we can get some impact. Or I simply turn down the request. Development programmes in the education sector are often
  7. I am often asked to help manufacturers or development organisations in developing countries to prepare for technological disruption at the technological frontier. That means technologies that are newly emerging. The problem is, most companies in developing countries will not be disrupted by cutting edge technology. They will be disrupted when older technologies reach new levels of efficiency and scale, perhaps in combination with newer technology. That means that an older technology evolves to become available as a utility service or on a pay-per-use basis. That is how the fundamental disruptions occur that completely displaces existing markets and sociotechnical arrangements. An example if PV electricity to homes. In many developing countries a homeowner can now buy panels, inverters, brackets and batteries from hardware retailers (or online). It may be illegal in many countries, but homeowners can take their homes off the grid. If enough homeowners do that, national power utilities may collapse. Perhaps another example is that as developing countries switch to fibre internet connectivity, all the IT companies that used to provide small servers, desktop maintenance, server maintenance, cabling installations, etc are disappearing. They are disappearing because they have not long ago mastered an older technology (shared server-based computing, remote network maintenance) that has recently become a utility-based service.
  8. I am asked by an international development organisation to help with a project aiming to support 25, or 50 women, girls, lecturers, youth or a handful of companies. 25 out of a population of thousands or millions is really depressing. This is not systemic, nor is it sustainable. I cannot get involved in these projects, my conscience will not allow me. If any beneficiary group is so marginalised or excluded that 10, 20, or 50 seems like a good indicator of impact, then we should really be going back to the drawing board about the complexity of the system and our sensitivity to the decision points, the attractors and the boundaries in the system. Most likely we should be targeting changes in mandates, roles and functions of institutions and not be focused on individual beneficiaries. The system must be very dysfunctional (meaning somebody must be benefitting enough to keep it in this state), and focusing on getting a handful of people through the system despite all the resistance or challenges is not systemic. In fact, everybody that is inspired by this handful might suffer severe challenges to follow in their footsteps. In a complex system, fixing a little part and then scaling it up does not change the fundamental working of the system. But let me stop venting now, I am asked frequently enough to talk about the potential of complexity thinking applied to developed. Maybe this deserves a blog post of its own.

These are just some thoughts about the challenges that some organisations are grappling with when they reach out to me. These are some of the common objections that many clients are challenged by based on my writing, teaching or speaking. Perhaps these are also the reasons why some clients decide to appoint somebody else or to never reach out to me in the first place. But these are also the points that keep me awake at night, the recurring themes that come up even when I am trying to walk the dog.

Let me know if any you’ve also had these conversations, or whether your organisation, funder or clients are stuck on the same issues. If there is sufficient interest in any of these points then we can perhaps think of how to explore these deeper, or perhaps we can even get together to brainstorm these.

The evolution of technologies, industries and regions

In the earlier research on technological evolution in the 1970-1995 period, attention was mainly paid to either a whole economy or a single sector or technological paradigm. It is broadly understood from this research that different industries and technologies evolve at different rates. This means that over time, some industries may be more important than others, or at least, some may be accelerating while others may be stagnant or declining. In recent research by Saviotti and Pyka (2013), the emergence of new technologies and industries (and the goods and services that they provide) is seen as offsetting the diminishing returns that are innate in the development of existing technologies. Nelson (2015) argues that this is a reason why absorption and further development of these technologies are necessary to maintain economic development.

In enabling technological evolution in countries, a whole range of actors play a part. Individuals and informal networks, to large and small firms all play a role. However, for the last century, most technological advancements have been supported by scientists, the academia and professional societies and a range of supporting meso organisations. In Europe, professional associations often play an important role in the deepening and dissemination of technological knowledge.

I want to come back to the meso organisations mentioned in the earlier paragraph. Meso organisations or functions are created in response to structural issues like market failures, sometimes government failures or persistent patterns of underperformance in the economy. These meso functions are critical in supporting economic actors to discover what is possible in a given economic context, to assist stakeholders to overcome coordination failures, and to provide critical public goods (such as scarce or expensive technological infrastructure, demonstration facilities, testing facilities, public research, and so on).

The meso functions enable a society, industry or even the public sector to discover and absorb new ideas, they enable learning by doing, they encourage the adaptation and dissemination of new knowledge or technologies, and they connect different stakeholders to overcome coordination and search failures. These meso functions are a critical ingredient in the local innovation system as they extend the technological capability of a given sector, industry, market or region in a country.

You would have noticed that I have not yet mentioned universities and public research efforts. This is simply because I have written about them so often as they form a critical part of the local innovation system. I sometimes even think that the higher education sector receives too much attention. Yet, education from basic schooling to higher education plays a critical role. For me, a university is an important meso organisation, and research centres, technology extension centres and laboratories that provides testing facilities are all important meso functions or maybe even meso organisations hosted by a larger organisation.

The importance of the higher education sector in the technological infrastructure varies for different parts of the economy. Nelson contends that scientific and technological research and teaching, especially the more applied fields, provide a base of knowledge that is accessible to all technically sophisticated individuals and firms working to advance technology in a field (Nelson, 2015). However, different fields also depend, to different extents, on scientific and formal research and technology support. Therefore, measuring journal articles and research outputs as a contribution to the national innovation system or as a proxy for technological capability will always paint only a partial picture. It really also depends on the pace of change and scientific advancement that is taking place in a region, a technological domain or an industry.

Furthermore, different industries depend, to different extents, on government support and incentives. In some fields public support is crucial, and in other cases, provides little incentive or value. In many cases innovations preceded science, and continued development is only possible due to the iteration between researchers and enterprises. Nelson continues that the kinds of firms that do most of the innovating differ – in some fields this tends to be large, established firms while in others it is smaller firms or new start-ups (Nelson, 2015).

Nelson draws an important conclusion that has really shaped my own thinking. Nelson states that there is no single set of policies that are applicable to all technologies and industries. What will be effective in some fields will not be in others. For instance, small business promotion in some sectors in one country could work, but it could be ineffective in another country.

In South Africa, with its very high coordination costs and high compliance costs, smaller enterprises in the manufacturing sector are at a huge disadvantage. The distance to sophisticated buyers and the challenges with exports compounds the difficulty for smaller enterprises to compete globally from the local base.

Nelson is also known for his writing on the importance of a wide range of social institutions, both formal (for example a cluster development organisation) and informal (the trust networks between members of the clusters). He refers to these social institutions as social technologies, and he argues that they co-evolve with physical technologies to enable economic development. These social institutions range from central banks to a diverse range of firms, but importantly include other forms of organisations such as scientific and technological societies, universities, government agencies and even capital markets. These institutions are the focus of the discipline of innovation systems.

Nelson emphasises that “that when a potentially new technology emerges, new institutions often are needed to develop it, and invest in and operate effectively the economic practices based on it”.

Nelson acknowledges it is not an easy task, as it is hard to predict which emerging fields of promising new technologies are going to be important in driving economic progress in the future, and which will have a modest impact. The policies to create or reform institutions need to be adaptive and flexible. Arthur (2009:186) confirms the view of Nelson and argues that “We cannot tell in advance which phenomena will be discovered and converted into the basis of new technologies. Nor can we predict which combinations will be created.”

That brings me back to my intent with this post. When we look at technological disruption and change, it is very easy to get caught up in the potential or risks of any given technology. But we must not take our eye of the informal and formal institutions, market systems, regulations and technological domain specific organisations that are needed to make a new technology viable. At the same time, we also have to figure out how to gracefully exit older technologies and how to either shut down or transform public organisations that once had a critical role in supporting those industries and technologies.

Again, I repeat, the so-called fourth industrial revolution is going to be more disruptive at the level of institutions and social arrangements than it will be disruptive for the enterprises that are competing at the technological frontier.

In South Africa, we have a triple-challenge.

1 – Our institutions change very slowly, and we have huge social tensions about how to allocate resources and wealth in the economy. Our local municipalities and local economic development activities are ineffective (with some exceptions in some of the larger metros). Yet, local authorities have hardly any influence over the quality and effectiveness of national meso programmes that are supposed to enable economic change.

2 – This is compounded by a largely uncompetitive economy with lots of market concentration.  The regulatory burden in the economy keeps a lot of potential entrepreneurs employed in the corporate and the public sectors.

3 – Our discussions in South Africa about technological change, technological capability and the promotion of the innovation system is dominated by a linear logic of science leading to technology leading to innovation (the so-called STI approach). There is not enough attention being paid to the eco-system of organisations, technology extension agencies that can help enterprises master new technological domains, reduce coordination costs, the so-called Do, Use, Integrate (DUI) kind of innovation. On that point, we also have very few (if any) technological organisations tasked with transforming or upgrading whole sectors or regions in the country from a technological perspective. Everything is aimed at one enterprise at a time.

My research agenda:

This is what my research is about at the moment. I am working with a team from TIPS and the dti (South African Department of Trade and Industry) to strengthen the visibility of this technological meso network, while also strengthening the public sectors ability to spot technological disruptions and to be more pro-active.

Please sign up below if you want to stay informed of our progress as I will not be able to share all of our learning in the public space all the time.



Sources:

Arthur, W.B. 2009.  The nature of technology : what it is and how it evolves. New York: Free Press.

Nelson, R.R. 2015.  Understanding long-run economic development as an evolutionary process. Economia Politica,Vol. 32(1) pp. 11-29.

Saviotti, P.P. and Pyka, A. 2013.  The co-evolution of innovation, demand and growth. Economics of Innovation & New Technology, Vol. 225 pp. 461-482.

Industry 4.0, IoT, 3D printing and more. Why some technologies diffuse so quickly and others don’t

Revised on 2 March 2018.

I receive questions daily about the Internet of Things, Industry 4.0, 3D printing and many other technologies and whether and how I think these technologies will disrupt manufacturing and education in particular and the world in general. These questions are not only from government officials, but also from businesspeople, friends and fellow geeks.

Let me briefly state that I don’t believe it is possible to spot a paradigm shift in the future or in the present. So I would be hesitant to predict whether or when all these big changes will happen. However, when we look back we can spot shifts. Technological change typically takes places slowly but surely, and then at a certain point there is a massive shift. The point I would like to make is that even the futurists have great problems predicting the direction of that sudden shift. We must also consider that technological paradigm shifts almost invariably do not work out the way they are predicted to do before they occur.

For the last few decades many major technological advancements have been heralded as game changers. The advances are often generalised as sweeping statements about large-scale change. However, in most cases, new advances take a long time penetrating our daily lives, if they ever get that far.

So let me rephrase the original question a little. Perhaps the question is more about figuring out which technologies are diffused quicker than others, and why. This is something that we can calculate to some degree using a short history and the current status quo of assessments of technologies that are being touted as near-term game changers.

Dissemination of technology or knowledge always consists of at least three elements. I will for now ignore the process of diffusion for the sake of brevity. There is a supply side, a demand side and some kind of institutional or social construct that enables and even multiplies the diffusion.

The supply side is often most optimistic about how their ideas are going to change the game. The demand side is often naive about how useful a new technology is in real terms. Many potential users simply wait and see. Then there are the institutional mechanisms that operate at local, national, regional and international levels. There are lots of tensions at this institutional level, because this is where a whole range of social technologies, formal and informal, have to emerge or change. Just think of how US-based software companies are constantly coming up against data privacy groups in Europe. I am sometimes grateful that the institutional level takes time to change. Changing institutions to enable knowledge dissemination often requires multiple knowledge domains, different management levels and social play-offs. Often changing institutional support to improve diffusion must also cater for integrating and synchronising many other simultaneous change processes that are not only technological. They could be about regulations, rights and creating new forms of organisation. Furthermore, physical technology does not always change things the way we expect. After all, innovation is a process of combination and recombination, both at the level of physical technologies and also at the level of social technologies.

There are typically a few constraints that frustrate the diffusion of new technologies broadly speaking. The first is the fixed costs of the technology itself. Fixed costs slow down supply (otherwise we would already have electric vehicle charging points throughout the country), and also slow down demand (I cannot afford a Tesla yet).

Suppliers like to think that their solutions will fix social mechanisms, but this is often the area where change is the slowest. Social technologies often take the longest time to evolve (for instance in developing standards and regulations for electric vehicles, charging points and recycling of batteries). By evolving, the technology itself often changes with respect to its use, meaning and value  – often beyond what the originators had in mind. Thus while individual users can quickly adopt a new technology or idea, formal institutions, regulations and supporting infrastructure often take longer to adapt to new ideas. This means that the supporting ecosystem that enables new ideas to be quickly diffused perhaps adds additional costs (perhaps massive infrastructure investment or learning is needed), or fails to reduce costs in the diffusion of ideas. This is where the second constraint comes in. It depends on how complex are the required social changes. I mentioned earlier that institutional diffusion must also integrate different complementary technologies. For instance, using a smartphone to make phone calls is easy (single technological paradigm). Using a smartphone to manage or monitor a part of a production line requires many complementary and concurrent capabilities and technologies. It may even require completely rethinking organisational structures, production lines and supplier networks. Simply put, if the new idea is very complicated to use (due to the many concurrent investments and capabilities that are needed), then the costs goes up in terms of education, regulation, infrastructure, coordination, specialisation, management and so on. Just think of what it would take for South Africa to adopt driverless electric vehicles …

Perhaps this also explains why individual companies (think hierarchies) tend to absorb technologies easier than societies or economic sectors. Inside a company management can overcome coordination failures much easier than within a sector or broader society. Meso institutions such as universities and technology transfer organisations are very important for overcoming these coordination costs, but they tend to change slower.

The complexity of technology and its demands on the meso organisation is important in my work. I help these organisations figure out how to navigate the complexity of new technology adaptation and diffusion. It requires an understanding of users, some understanding of technologies, but a lot of understanding of the process of change and organisation. I don’t think I would be able to do my work without my understanding of market failures, especially with regard to failures in the capturing, dissemination, absorption or valuing of knowledge.

There are lots of amazing technological ideas out there that have been tried, tested and measured and found to be effective. Many companies here in South Africa are already using these technologies. So supply and demand exists, and in many cases there are transactions. Yet many of our industries, enterprises, universities and policy makers don’t know how these technologies can save costs, improve efficiency or strengthen resilience. Nor do they know which ideas will stick or have the most impact. So there is a missing institutional capability that reduces the complexity of the technology. What is often missing are institutions that make the dissemination of new ideas easier and cheaper. It is often more the case that the users (and possibly suppliers) don’t know how much the full implementation or use of these ideas would cost, or what skills, complementarities or networks are needed to master new ideas. Many market-supporting social technologies (in the form of institutions and networks) are lacking. Somebody must reduce the search, evaluation and coordination costs. This is where the complexity lies. And neither do we want our institutions to try and implement every new technology – this is where social balance and a longer-term vision are required.

So now I can get back to trends such as the Internet of Things or digitisation of the manufacturing environment. Many manufacturers know about Computer Aided Design (CAD) simulation or even rapid prototyping. But how can we reduce their risk of trying 3D printing, or how can they add more sensors to their production facilities so that they can improve measurement and control? It is not just about the cost of using the technology once or twice. There are issues that are holding entrepreneurs back from simply rushing to an online store and hitting “buy now”. Where would they get the trained staff from? How would they train existing staff? How would they manage a new competency? What would it cost to certify or maintain? Where would they find new customers or suppliers, and what would it cost them to develop the complementary capability and optimally use the new technology? And most importantly, how do we reduce their risks of trying something in different combinations? These are the issues that a network of institutions must consider as they craft their technology extension and demonstration strategies.

For me there is a strong role for technology intermediaries to play in demonstrating, perhaps on a small scale, how new technologies can be integrated into existing workplaces. This means that technology intermediaries must be funded to host (and master) a wide range of complementary technologies, so that entrepreneurs can combine what they have in place with the capabilities of these technology intermediaries. Or that new entrepreneurs not burdened by sunk investments can use their agility to gain access to complementary technologies in order to create new markets. These institutions should not be measured by how many companies fully absorb new technologies (this could lead to perverse incentives), but perhaps by how many companies have tried, engaged with and been exposed to new ideas.

At the same time, policy makers should look at ways to introduce new technologies into developing countries beyond demonstration or technology extension. Some countries such as Germany or Singapore have also been purposefully supporting disruptive incumbent enterprises by supporting the uptake of new technologies. Sometimes you can demonstrate until you are blue in the face, but incumbents won’t change if they don’t have to, and small enterprises sometimes simply cannot build up the momentum to challenge the status quo.

I would like to end this blog by briefly summarising what I’ve been discussing. For me the question of how new technologies may affect our lives is too focused on the hardware  and the geeks who love it. Even though I admire the suppliers and developers of new technologies, and I really admire the sophisticated users who are constantly inducing the emergence of newer and greater technologies, I believe that the real change we need is in getting better at creating responsive institutions that lower the costs for suppliers and buyers to try new things. This is where we can overcome many of the costs that slow down the absorption or dissemination of new technologies.

 

Summer Academy 2017 to focus on meso organizations

In July 2017 we (mesopartner) will host the next annual Summer Academy. This year is special for me, because the theme of the event is about meso-organisations in the economy. Meso organizations are often taken for granted. And it is often assumed that leading or growing a meso organization is like managing a business or a project.

We believe these organizations, and especially their leaders, need some special attention.

For those that wonder what is meant with “meso”, it refers to a specific kind of organization or program that is created with the intent to overcome a whole range of market failures in an economy. Meso-organisations are known by their specificity, for instance to assist specific industries to modernize, or to support start-ups, or to promote investment in particular new technologies or a specific sub-national region. The reality is that while we describe their role in terms of market failure, competitiveness and growth, very often these organizations, their funders and even their clients have very little interest in theoretical concepts like market failure, systemic competitiveness, innovation systems or even modernization. They have a mandate, a limited budget, and many competing demands.

Most of my work is about helping leadership teams of meso organizations to make better sense of their context, to design better programs and services so that they can have a bigger effect on the industries they serve, or to become more resilient.

Increasingly our focus is on helping these organizations to become more innovative, not only in their product/service offerings, but in the way they unleash the creativity of their staff, their networks and how they all learn and discover what is possible in their given social and economic context. It is about stretching the capability, the influence and the adaptiveness of the meso.

More_Meso

To manage a meso organization takes a special kind of person.

  • Firstly, the leader must meet the demands of their funders or stakeholders. They must be able to handle a huge bureaucracy and lots of reporting on the often seemingly senseless of indicators and targets that funders require. Spare a thought for those that depend on several sources of funding.
  • Secondly, the leader must meet the demands of industries, clients, wanna-be entrepreneurs and dreamers that come knocking on their door. While we can collectively call these businesses “clients”, they are in fact a very diverse group with a mind numbing diversity of requirements, demands, capabilities and competencies. While in an industrialized country it is sufficient to work with those enterprises that shows the right kind of curiosity and willingness to pay for top notch external support, in developing countries these meso organizations are often under pressure to work with lagging enterprises that are struggling to master the basics, marginalized groups and must also contribute to all kinds of social objectives. It is not simply about being at the cutting edge and competitiveness, but also about creating pathways for others to follow. This is very hard to do when there are huge shortages of professional management in companies, poor schooling and a whole host of interconnected market failures that seems to hold everyone from reaching their full potential.
  • Thirdly, these leaders must contend with their organizational context. For instance, many meso organizations I work with are associated with research institutions or universities. That means there is a demand on these centers to contribute to the academic objectives of their host. This includes creating opportunities for students to gain work experience, providing post graduate support, procuring raw material and components and running a business through an administration designed for another purpose.

My list could go on. But perhaps at another time.

We’ve been developing tools, instruments and concepts targeted at meso organizations for more than 10 years. This year we will focus on these, without losing focus on promoting the healthy economies of territories and industries.

I am looking forward to the Summer Academy where we can explore these and other issues. Every year we attract a range of experts and practitioners from around the world where we learn together and get to explore issues that we face in the field with a combination of theory and practical simulations. I hope to see you there!

For more information, visit the Mesopartner Summer Academy page.

The next step in systemic change

Over the course of 2016, Marcus and I worked on a piece of research on systemic change in market systems development, funded by the BEAM Exchange. In this work, we question the utility of the concep…

Source: The next step in systemic change, an update on our research written by Marcus Jenal on the Systemic-Insight.com website

Instigating Innovation: Tech push fallacy is still alive

Let me continue with the Instigating Innovation series. I will slowly shift my attention to the technology intermediaries, research centres and technology transfer organisations that exist in many countries to overcome persistent market failures in the private sector. Yes, I know it is a shock for some, but these centres do not really exist to promote the technical careers or the of these people in these centres, nor to promote a specific technology in itself. From a systemic perspective, these kinds of technological institutions exist because they are supposed to overcome pervasive causes of under investment in technology (and skills development) and patterns of poor performance of enterprises. Economists describe the last two phenomena as the result of market failures, mainly caused by information asymmetries, a lack of public goods, high coordination costs, economies of scale and a myriad of other challenges faced by enterprises (hierarchies), markets and networks.

The challenge is that very often the technology these intermediaries promote become an objective in itself. The technology, embodied in equipment, processes and codified knowledge, becomes the main focus. So now we see technology centres being created to promote Industry 4.0, or 3D printing, or environmentally friendly technology. While I am the first to admit that I am helping many of my clients come to grips with industry 4.0, additive manufacturing or environmentally friendly technology, we must not confuse means with ends.

About 20 years ago, my late business partner Jorg Meyer-Stamer and his colleagues at the German Development Institute developed the Systemic Competitiveness framework. Many of my posts on technological capability and innovation systems are based on this Systemic Competitiveness, but I wont go into this right now (perhaps I can do that in a later post), but will only state this this model has greatly influenced my thinking of how technological capability can be developed in order to upgrade, improve or stimulate the competitiveness and innovative behavior of enterprises and state institutions. In one of my current research contracts I had to retrace the evolutionary economics origins of this framework and I found the following paragraph in one of the early publications:

“A further fallacy also played a role in the past: the establishment of technology institutions was based on the technology-push model, according to which breakthroughs in basic research provide impulses to
applied research, which these in turn pass on to product development. In fact, however, research and development is for the most part an interactive process; and it is frequently not scientific breakthroughs
that impel technological progress, but, on the contrary, technological breakthroughs that induce scientific research, which then seeks to interpret the essence and foundations of a technology already in use.”

What struck me was the past tense in the first sentence. So many of the technology institutions I am working with are still established on these same grounds. A technology push model. Actually, much of economic development has the same mindset, a solution-push model. It implies that clever solutions are developed in a clinical and carefully managed environment, and then is made relevant to business people (as Jorg often said “stupid business people”) through iterations of “simplification” and “adaptation”. Don’t get me wrong. I am the first to promote scientific discovery. But this has its place. Modernisation of industry must start from the demand side:

  • where is the system now?
  • What is preventing companies from competing regionally and internationally?
  • What kind of failures, both in business models but also in markets are repeating over and over again?
  • What kind of positive externality can we create?
  • How can we reduce the costs for many enterprises to innovate and become more competitive?

Only then do you start asking what kind of technological solutions, combinations, coordination effort or demonstration is needed. Perhaps no new equipment or applied research is needed, maybe something else must first happen. Some non technical things that I have seen work are:

  • mobilising a group of enterprises into a discovery process of common constraints and issues
  • arranging exchange between researchers, academics and business people at management and operational levels
  • hosting interesting events that provides technical or strategic inspiration to the private sector
  • helping companies overcome coordination costs
  • making existing technology that is not widely used available to industry so that they can try it
  • placing interns at enterprises that have different skills than the enterprise use at the moment
  • arranging visits to successful enterprises; and many more.

The truth of the matter is that the innovative culture of the technology institution, and its openness to learn from the industries it is working with are much better predictors of whether the industries around them will be innovative. If the technology institutions are bureaucratic, stale or rigid, nobody in industry will be inspired by them to try new ideas, new technologies, explore applying technology into new markets, etc. Just like we can sense when we arrive (or contact) a succesful enterprise, so we can all sense when we have arrived at an innovative technology institution. It looks different, there is a vibe. It is information rich, everywhere you look you can see ideas being played with, things being tried, carcasses of past experiments can be seen in the corner.

I can already hear some of my customers leading technology centres reminding me that I must consider their “funding mandate from government” and their “institutional context in universities” as creating limitations in how creative they can be, and just how much demand orientation they can risk taking. Yes. I know this. In the end, leaders must also create some space between the expectations of their funders (masters?), their teams and their target industries. In fact, how leaders balance these demands and what is needed by their clients, students and staff can probably be described as business model innovation. If you cannot get funding from government for what you believe is required, just how creative are you to raise this funding through other (legal) means?

We have seen over and over again that it is not the shiny new piece of equipment in the technology centre that inspires industry; but the culture of the technology centre, the vibe, the willingness to try crazy ideas to make even old stuff work better or combining old and new. Ok, I agree, the shiny equipment excites geeks like me, but this is not all that matters.

My main point is this. Technology Institutions should focus on understanding the patterns of performance or under-performance in the industries and technology domains they are working in, and should then devise innovative products, services and business models to respond to these. This means working back from the constraint to what is possible, often through technology. To be effective in helping entrepreneurs overcome the issues they are facing would require that these technology institutions are innovative to the core. Not just using innovative technology, or offering some innovative services, but also in how these institutions are managed, how they discover what is needed and in how the collaborate with other institutions and the private sector.

To instigate innovation in the private sector, publicly funded technology institutions need to be innovative themselves.

 

Source:

ESSER, K., HILLEBRAND, W., MESSNER, D. & MEYER-STAMER, J. 1995.  Systemic competitiveness. New patterns for industrial development. London: Frank Cas. Page 69

 

 

Significance over scale when selecting sectors

When promoting territorial economic development from an innovation systems perspective it is important to find ways of increasing the use of knowledge and innovation in the region. However, in mainstream economic development there is a tendency to target the private sector based on scale. This means that practitioners look at quantitative measures such as jobs, numbers of enterprises, numbers of beneficiaries, etc. when deciding where to do analysis and focus support. This is common practice in value chain promotion, sub sector selection, etc. Many development programmes do this as well prioritizing scale measures such as jobs, women, rural individuals, etc.

From my experience of assisting development organisations to strengthen the economic resilience of regional economies (which means more innovation, more experiments, more diversity, increased use of knowledge, more collaboration between different technological domains), I have found that the scale argument is distracting and too focused on the beneficiaries (whatever is counted) and not focused enough on those indirect public or private agents that are significant and that enable a whole variety of economic activities to take place. With significant I mean that there could even be only one stakeholder or entry point (so the direct scale measure is low) but by addressing an issue it enables a whole variety of economic activities to take place.

Of course, scale is very important when a local politicians need votes. It is also important when you have limited budget and must try to achieve wide spread benefit. For this reason scale is very important for social programmes.

However, when local institutions are trying to strengthen the local innovation system, in other words improve the diversity technological capability of a region, then scale becomes a second priority. The first priority then becomes identifying economic activity that enables diversity or that reduces the costs for enterprises to innovate, use knowledge more productively should be targeted. The reason why this does not happen naturally is that these activities are often much harder to detect. To make it worse, “significance” could also be a matter of opinion (which means you have to actually speak to enterprises and their supporting institutions) while crunching data and making graphs often feel safer and appear to be more rigorous.

My argument is that in regions, the long term evolution and growth of the economy is based on supporting diversification and the creation of options. These options are combined and recombined by entrepreneurs to create new economic value in the region, and in so doing they create more options for others. By focusing exclusively on scale, economic actors and their networks increasingly behave in a homogeneous way. Innovation becomes harder, economic diversity is not really increased. I would go as far as saying that success becomes a trap, because once a recipe is proven it is also harder to change. As the different actors becomes more interdependent and synchronized the system becomes path dependent. Some systems thinkers refer to this phenomena as tightly coupled, meaning a failure in one area quickly spills over into other areas. This explains why whole regions goes into decline when key industries are in decline, the economic system in the region became too tightly coupled.

But I must contradict myself just briefly. When interventions are more generic in nature, meaning they address market failures that affect many different industries and economic activities, then scale is of course important.

The experienced development practitioners manage to develop portfolios where there are some activities that are about scale (for instance, targeting a large number of informal traders) and then some activities that are about significance (for instance ensuring that local conformity testing labs are accessible to local manufacturers).

The real challenge is to figure out what the emergent significant economic activities are that improves the technological capability in the region. New emergent ideas are undermined by market failures and often struggle to gain traction. Many new activities requires a certain minimum economic scale before it can be sustained, but this is a different kind of scale than when practitioners use scale of impact as a selection criteria. Many small but significant economic activities cannot grow if they do not receive public support in the form of promotion, awareness raising or perhaps some carefully designed funding support.

There are a wide range of market failures such as high coordination costs with other actors, high search cost, adverse selection, information asymmetry and public good failures that undermines emergence in local economies. It is exactly for this reason that public sector support at a territorial level (meaning sub national) must be sensitive to these market failures and how they undermine the emergence of new ideas that could be significant to others. The challenge is that often local stakeholders such as local governments have limited influence over public institutions in the region that are funded from other spheres of public administration.

Let me wrap up. My argument is that scale is often the wrong place to start when trying to improve the innovation system in a region. Yes, there are instances where scale is important. But my argument is that some things that could be significant, like the emergence of variety and new ideas often get lost when interventions are selected based on outreach. Furthermore, the focus on large scale impact draws the attention to symptoms of problems and not the the institutional or technological institutions that are supposed to address market failures and support the emergence of novelty.

I will stop writing now, Marcus always complains that my posts are too long!

Let me know if I should expand on the kinds of market failures that prevent local economies from becoming technologically more capable.

 

 

On market failures – perhaps you are too close

I am often involved in coaching and capacity building a different kinds of private sector development experts working in the developed and developing world. I am sometimes shocked when I realize that a practitioners or programme managers in the field involved in market development do not understand some of the basics of how markets work or how to address market failure. This is often made worse by the broad ideological blindness of the organizations that promote market development approaches. I state this based on my experience that when markets and its alternatives are properly explained to teams in organizations, many problems resolve themselves, largely because the way markets function and evolve are better understood. Don’t get me wrong, I love markets. They are amazing in that they can emerge almost anywhere but where we often seem to need them. But I am not blind to their limitations (like how unfairly they allocate gains), nor am I naive about what it takes to get market systems to work.

If you are trying to solve market failures by bringing suppliers and buyers of a particular good or service together you may be too close to the action to really make a difference in the medium to long term. Actually, you might be making it harder for markets to evolve, as trust that is weakened when something does not work as it should or as promised is not easily forgiven in the real world, making 2nd attempts very hard if not impossible. There are many reasons why I say this.

Firstly, a market failure is a symptom that something else is wrong. It could mean that knowledge about the product or service, or how or why it is used, is not available or costly. This could imply a deeper failure (knowledge related) that people do not understand the value, the impact or the modalities of the good or service, or how the good or service will affect them or what it might depend on. Or the supplier is not able to demonstrate or explain how a good or a service can be used, or that it will address a particular need.

Secondly, modern markets are tightly intertwined and interdependent on other markets and other forms of allocation beyond markets. For instance, the service for quality management advice needed by food producers is dependent on many other services, including management consulting, HR consulting and sufficient demand for companies that are for quality accredited. It may also depend on some technical expertise in the form of a service about the product itself and the regulations it must comply with. These different markets co-evolve and depend on each other. Furthermore, this quality management service is also shaped by domestic and international regulations, standards and norms. Lastly, this service may also be specific to a particular service or product type, so the potential impact of the service or particular good may be easier (or harder) to guess so that a potential buyers of the service can figure out if this money might be spent in a better way. Remember that spending money on the wrong thing (adverse selection) is also a market failure if this is caused by an inability to thoroughly evaluate the expected benefits of alternative choices.

Thirdly, most services and products traded in markets also depend on related or supporting networks and hierarchies. For instance, few market services or products used by businesses can be used if that business (a hierarchy) does not have a management capacity, or absorption capacity (to figure out how the product or service will impact the rest of the business) or a functional capacity (internal expertise to use the product/service optimally). Many first time users of products and service depends on social networks to evaluate alternatives.

Fourthly, many services are not provided only by the private sector, but also by public providers and not-for-profit organizations (and even via networks). The more generic the service, the more likely that it wont succeed as a private service (because business typically pays for additionality, generic solutions can often be developed in-house (via hierarchy). Many “business services” in developed countries are provided by private, public, not-for-profit (networks) or hybrid models. Multilateral development organizations often promote “commercial” business services even when in their own countries these services are also available as public or hybrid services. Often services are first provided by the public sector, and the complimented by the private sector as demand becomes more specialized. Or services are provided by the private sector, until the public sector realize that it is in fact a public good or service and that it should in fact be provided by the state. But often, in the long run, products and services provided in the public sector are also provided in the private sector, and vice versa. The order depends not only on the context, but also on the dependency and interdependency of the markets, as well as the costs and efficiency of the alternative means of provision.

Lastly, in the words of Mark Granovetter, markets are deeply embedded within a societal context. Markets are part of the society, it reveals what a society values, how much it trusts, and how much it values people keeping their promises. You cannot isolate a market from the context, optimize it and then insert it back in the society. The societal context provides the trust, the enforcement and even information flows that makes it possible for markets to work. Out of this society a whole range of institutions emerge, some in the form of organizations, others in the form of norms, habits and routines.

During training sessions on how markets work, practitioners are often surprised to find out that markets are only one way a society allocates goods. The other way is through networks (often not in exchange of currency), or through hierarchies (organizations that allocate resources internally). When markets are new, they often emerge first as networks. Over time a group of people that know each other socially formalize their transactions, and out of this markets emerge. This is why we often advise practitioners that when one form of allocation fails, the solution is often to stimulate the others. So when a market fails, first try networks or hierarchies.

We often use a case study to illustrate the point. A service provided in one country by the private sector as a commercial service, is provided in another country as a public service. In a third country, the service is provided by an association as a network good. Pairs of practitioners from different countries then assess the three cases and must make a recommendation. It is quite funny to see how people from different parts of the world disagree on what constitutes a commercial service (market transaction), what constitutes a public good (allocation via hierarchy) and when a network transaction is better.

On the point of designing markets. While it is true that some markets are designed, these designs are often carefully planned and regulated. Think of mobile phone spectrum or broadcasting rights. It is not so easy to design markets that needs many actors to cooperate and that depends on many other variables that you cannot control through regulations. Even if you could use regulations, you might have the problem of not being able to change something if you need to.

In the end, markets learn and adapt. Actors in markets experiment, they learn from each other, and they adapt. This takes time, much longer than the life of a development programme. Ask yourself, why does a market for cigarettes develop in a prison within hours, but a market for tomatoes can take years? We have to understand the preconditions and the evolution of markets much better if we want to assist the evolution of societies and their markets.

To solve market failures, we often have to move one level up to where societies turn broad and generic policies about the society into organizations or targeted interventions. This may still mean working with the people doing the transactions to learn from them, but often the solutions will lie in institutions, policies and eventually maybe in regulations and standards.

The oblique search for new industrial opportunities

Industrial policy is typically set at national level. It is often aspirational and attempting to “stretch” an economy into new kinds of production and value addition. Programmes are designed, targets are set such as doubling manufacturing contribution of x% within 7 years. Therefore it is sometimes disconnected from the present as it seeks a new Status Quo, a different structure of production.

Yet the natural process under which new production activities are created is complex. It is not as simple as finding a market opportunity, finding the right production process, securing funding and launching a business. The economic context, the political climate, the entrepreneurs with the right levels of experience, backing and confidence are all needed. And don’t forget individuals with a desire to expand, take risks and try new things.

Danni Rodrik argues that Industrial Policy should be a search and learning process. Many centrally planned industrial policies even cite Rodrik as they then commence with outlining with great certainty what must be done, by whom, with which resources and to which effect. This logic completely ignores the importance of what exists, and what is possible from here. It ignores that fact that the past matters, and that the current structures are the result of a series of evolutionary steps. Complexity science teach us that these plans ignore the fitness landscape, a landscape that is dynamic and constantly changing. Any attempt to extend the horison further than what is within reach should be treated with great caution. One of the greatest obstacles is the attide towards risk and the optimism of enterprises. I don’t think Rodrik meant the ministers officials must do the search, rather, industry must do the search or at least be actively involved in the search in partnership with government and institutions.

But the search is not about answering a simple question. A more oblique approach is called for (see John Kay, Obliquity). Which means we should set aside targets and indicators, and focus on creating small experiments to introduce more variety and options into the system. It means that finding out that something is not possible is as valueble as figuring out that something else is indeed possible. Taking Rodrik literally, it would mean also giving much more attention to what entrepreneurs are searching for and experimenting with in the background. It requires that we recognise that the current economy is creating what is viable under the current dynamic circumstances, and that only strategies that recognise where we are and what is certainly within reach from here is in fact viable. The challenge for developing economies is that what is possible is typically limited and further constrained by strong ideological bias as to what is possible or desirable. For instance, many South African business owners are trying to shift out of price sensitive markets competing on a basis of low cost skills. Entrepreneurs are moving into knowledge and capital intensive production, with more focus on service and integration. Government is searching for a way to employ people with low skills because its own social programmes and service delivery is not a viable fall back for people with insufficient skills.

The search is not about analysis
Complexity describes a situation where the patterns of what exactly is going on is unclear or shifting. We cannot entirely figure out what is leading to what and what is reinforcing what. Due to the dynamism, we cannot really understand the situation better through analysis. Another way of explaining this, is that a situation is complex when more than one competing hypothesis can with some probability explain what is going on. The only way to make sense of complexity is to try something, actually, try many things. And then see what seems to work better. It means that we start with what we have and who we know (and can trust), and then try a range of things with the simple purpose of seeing what is possible within the current constraints of the economic system. Steps must be taken to reduce risks (for instance by ensuring that the costs of failure are small, or that the experiments try different ways of solving the same problem), but then this whole approach in itself must be recognised to be politically risky.

This is where donors and development partners come in. By assisting developing countries to conduct low key experiments in order to create variety is essential, as development partners can reduce the political risks of their counterparts. This approach will furthermore require the abondenment of targets and indicators as an attempt to measure accountability and progress. A more subjective approach that sets indicators that monitors the overall health or dynamism is needed so that the experimentors can sense when they are indeed making progress. Thus the indicators does not measure success, nor input.

Perhaps then a skunkwork approach to a more complexity sensitive industrial policy approach is needed. Let the normal industrial policy targets and rigmarole be there. Politicions and bureacrats like this sense of certainty and purpose. But allow for some experimentation on the side under the heading “industrial policy research”. Allow this team to work with private sector partners to conduct small experiments to try new business models in an incremental way. For instance, do incubation to try new ways of mineral beneficiation, but without investing in large buildings or expensive equipment. Use what is existing as far as possible, even if it means having the manufacturing done on a contract basis elsewhere in order to test if local demand for the outputs exist.

Industrial policy is different at local and national levels

Industrial policy at the national, provincial or sub-national and local levels is different. While at the national level, industrial policy is often focused on coordinating public resources around certain priority areas, local industrial policy is almost completely focused on the pressing issues of the private sector and organizing the public sector around these needs. While at the national level, selecting opportunities for investment is often difficult and focused on the future, at the local level industrial policy might get trapped into grappling with “what is” and the legacy of the past.
At all the levels policy makers will be grappling with balancing “what we have now” with “what is desirable”. All too often “what is possible or within reach with what we have” is not asked enough of public and private actors. These questions are much harder to ask and to answer at the higher levels, because the industries are further away or maybe not even entirely visible, and emerging competencies in public and private actors may still be hidden.
At the local level, business is more visible. Unfortunately, at the local level past relations and power struggles between various actors still shape the current dialogue and possibilities for future collaboration. Therefore, industrial policy implementation at a local level must have a strong process element that attempts to reconfigure stakeholder relations around areas of common potential or concern. In our practical experience we know that at the local level it is easier to mobilize the private sector around problems (such as skills shortages and inadequate infrastructure) than around opportunities. However, it requires a certain confidence and maturity of local government and local public agencies to engage with the private sector when they know that they will be dealing with complaining business people. The one thing both the local private sector and the local agencies of the public sector have in common is limited resources. Perhaps local industrial policy then should focus on making the best of the existing limited resources. The focus should be to find opportunities for collaboration that can be exploited in a process approach, not focused on large projects or a grand vision dominated by the public sector, but on a process of finding small opportunities to make better use of local competencies, local knowledge and local capacity in both the public and the private sector. I am not arguing that local industrial policy must be completely inward looking, as the relation between local firms and external markets are an important resource. However, I am arguing that local industrial policy must start with the current reality while mindful of the past and focused on what is called the adjacent possible. The adjacent possible means opportunities or solutions that are within reach by combining, recombining and maybe adding a little to what we have now.
I conclude by stating that at the local level, industrial policy is not so much about the public sector supporting structural change or achieving a vision of new industries. At a local level, industrial policy needs to be entrepreneurial in that it should focus on exploiting existing resources, knowledge and competencies to the fullest. Local industrial policy must have a process approach that does not get trapped into existing stakeholder and sectoral interests, but that strive to unlock the potential of the different knowledge bases and competencies in the locality to solve existing problems in innovative ways, while searching in an ongoing basis for opportunities for collaboration.